Surname	Centre Number	Candidate Number
First name(s)		2

GCE A LEVEL

A420U30-1

021-A420U30-1

WEDNESDAY, 20 OCTOBER 2021 – MORNING

PHYSICS – A level component 3 Light, Nuclei and Options

2 hours 15 minutes

		For Exa	aminer's use	e only
		Question	Maximum Mark	Mark Awarded
		1.	13	
		2.	15	
ADDITIONAL MATERIALS		3.	12	
In addition to this examination paper, you will require a calculator and a Data Booklet .	Section A	4.	19	
	Section A	5.	10	
INSTRUCTIONS TO CANDIDATES		6.	12	
Use black ink or black ball-point pen.		7.	8	
Do not use gel pen or correction fluid.		8.	11	
diagrams only.	Section B	Option	20	

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

This paper is in 2 sections, **A** and **B**.

Section A: 100 marks. Answer all questions. You are advised to spend about 1 hour 50 minutes on this section.

Section **B**: 20 marks; Options. Answer **one option only**. You are advised to spend about 25 minutes on this section.

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 5(a).

A420U301 01

PMT

120

Total

02

Examiner only In the following Young's double slit set-up, the laser emits unpolarised light. Two polarising filters are placed after the double slits so that the light from the top slit is vertically polarised whereas the light from the bottom slit is horizontally polarised. Evaluate whether or not (b) this set-up can produce the usual equally spaced fringes. [3] Double slits Vertically aligned polaroid LASER Horizontally aligned polaroid

3

PMT

A420U301 03

 (i) Calculate the number of lines per mm in the diffraction grating. (ii) Another laser is used and it is found that the n = 3 bright fringe is at exactly the same angle (47°) as the n = 2 line of the 633nm laser. Calculate the wavelength of the laser. 	Whi 633	le carrying out an experiment with a diffraction grating and a laser of wavelength nm, the $n = 2$ bright fringe is observed at an angle of 47° as shown in the diagram.
 (i) Calculate the number of lines per mm in the diffraction grating. [3] (ii) Another laser is used and it is found that the n = 3 bright fringe is at exactly the same angle (47°) as the n = 2 line of the 633 nm laser. Calculate the wavelength of the laser. [2] 		Diffraction grating LASER
(ii) Another laser is used and it is found that the $n = 3$ bright fringe is at exactly the same angle (47°) as the $n = 2$ line of the 633 nm laser. Calculate the wavelength of the laser. [2]	(i) 	Calculate the number of lines per mm in the diffraction grating. [3]
	(ii)	Another laser is used and it is found that the $n = 3$ bright fringe is at exactly the same angle (47°) as the $n = 2$ line of the 633 nm laser. Calculate the wavelength of the laser. [2]

BLANK PAGE

5

PLEASE DO NOT WRITE ON THIS PAGE

A420U301 05

Examiner

2. The lowest frequency stationary wave produced in a pipe, open at one end, and its amplitude profile is shown in the diagram on the left.

- (a) The next stationary wave has three times the frequency. Draw the amplitude profile for this stationary wave and the third stationary wave in the diagrams above. [3]
- (b) Dwight uses a variable-length pipe, open at one end, and a set of tuning forks of different frequencies, *f*, to measure the speed of sound in air. He obtains the lengths, *L*, for the first stationary waves for all tuning forks and records them in the table.

Frequency, f		Length	, <i>L</i> /cm		Speed of
/Hz	Reading 1	Reading 2	Reading 3	Mean	sound, c/ms^{-1}
256	32.0	32.2	32.2	32.1	329
288	28.5	28.2	27.9	28.2	325
320	25.3	25.4	25.2	25.3	324
341	23.7	23.9	23.7	23.8	325
384	21.0	20.9	20.8	20.9	321
426	18.6	18.6	18.2	18.5	315
480	16.2	16.6	16.0		
512	15.0	15.3	15.6	15.3	313

A420U301 07

(i) Explain why the speed of sound is given by:		Examiner only
c = 4Lf		
where c is the speed of sound in air.	[2]	
(ii) Complete the table for the 480 Hz tuning fork. <i>Space for calculations.</i>	[2]	

(iii) Dwight determined that the maximum uncertainty in the measured length was ± 0.3 cm and used this as the uncertainty in each mean length. He then produced the following table.

Frequency, <i>f</i> /Hz	Speed of sound, c /ms ⁻¹
256	329 ± 3
288	325 ± 3
320	324 ± 4
341	325 ± 4
384	321 ± 5
426	315 ± 5
480	± 6
512	313 ± 6

For the 512 Hz tuning fork, explain how Dwight obtained the figure $313 \pm 6 \text{ ms}^{-1}$ (you may assume that the frequency of the tuning fork is exact). [2]

07

.....

© WJEC CBAC Ltd.

Examiner only Dwight researches the speed of sound at 20 $^{\circ}$ C and finds that it should be 343 m s⁻¹ (iv) He concludes that the values of the speed of sound in the table are inaccurate and that some systematic error is responsible. Discuss whether or not these data are inaccurate and actually show a systematic error. [2] Dwight's teacher comments that there is an *end correction* that must be included for (V) sound waves in pipes. She states that the actual equation for the speed of sound is: $c = 4 \times (L + 0.3d) \times f$ where 0.3d is known as the *end correction* and d is the diameter of the pipe. She measures the diameter of the pipe as 5.0 cm and corrects Dwight's data: Speed of sound, c Frequency, f $/ms^{-1}$ /Hz 256 344 ± 3 288 342 ± 3 320 343 ± 4 341 345 ± 4 384 344 ± 5 426 341 ± 5 480 ± 6 512 344 ± 6 Calculate a corrected value for the speed of sound using the 480 Hz tuning fork data. [2] (vi) Discuss to what extent the final values are accurate and consistent with the published value of $343 \,\mathrm{m \, s^{-1}}$. [2] 15

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

A420U301 09

<i>(a)</i> Fo	or the o	ptical fibre	shown, calc	ulate the a	ngles $ heta$ and ϕ	<i>þ</i> .			[3]
10 – 4							<i>n</i> ₃ = 1.	55	
<i>n</i> ₁ = 1 21.1°	.00	θ			ø		<i>n</i> ₂ = 1.	58	
(b) He wit	ence, d thout a	etermine v rapid drop	whether the range in intensity.	ay shown w	ill travel a lor	ng distanc	e along th	e optica	l fibre [3]
	(a) Fo	 (a) For the o n₁ = 1.00 21.1° (b) Hence, d without a 	(a) For the optical fibre $n_1 = 1.00$ θ θ 1.1° θ θ 1.1°	 (a) For the optical fibre shown, calc n₁ = 1.00 21.1° (b) Hence, determine whether the r without a rapid drop in intensity. 	 (a) For the optical fibre shown, calculate the an n₁ = 1.00 <u>0</u> <u>0</u>	 (a) For the optical fibre shown, calculate the angles θ and q n₁ = 1.00 21.1° (b) Hence, determine whether the ray shown will travel a lor without a rapid drop in intensity. 	 (a) For the optical fibre shown, calculate the angles θ and φ. n₁ = 1.00 21.1² (b) Hence, determine whether the ray shown will travel a long distance without a rapid drop in intensity. 	 (a) For the optical fibre shown, calculate the angles θ and φ. n₁ = 1.00 21.1° (b) Hence, determine whether the ray shown will travel a long distance along th without a rapid drop in intensity. 	 (a) For the optical fibre shown, calculate the angles θ and φ. (b) Hence, determine whether the ray shown will travel a long distance along the optical without a rapid drop in intensity.

Examiner only Consider data sent down the core along two different paths - the central axis and at 11° (C) to the central axis as shown in the diagram. 11° n₂ = 1.58 Calculate the time delay between pulses sent along both paths when the length of (i) the optical fibre is 3.5 km. [4]

(ii) Hence, calculate the highest number of pulses per second that can be sent along the optical fibre without overlap, explaining your reasoning. [2]

12

A420U301 11

BLANK PAGE

Examiner only

> A420U301 13

field and to determine the magnetic flux density.

4.

Greg uses the following set-up to investigate the force on a current-carrying wire in a magnetic

Wire _ Magnet Electronic balance The portion XY of the wire which is in the magnetic field, has been placed carefully so that the current is from X to Y at 90° to the direction of the magnetic field. While there is no current, the balance is reset to display 00.00 g. When there is a current in the direction shown, the electromagnetic force results in a negative reading on the display of the balance. This signifies an upward force on the magnet and a downward force on the wire. Greg states that the forces on the wire and the magnet are a Newton's third law pair (a) (i) of forces. Explain briefly why Greg is correct. [2] (ii) The left pole of the magnet is a north pole. Explain how this is consistent with the information above, naming the rule that you used. [1] Turn over. © WJEC CBAC Ltd. (A420U30-1)

Examiner

only Greg varies the current, I, in the wire and notes the electronic balance reading each time and uses these to calculate the magnetic force, F. He records all his results in a table. (b)

Current, <i>I</i> /A	Balance reading/g	Magnetic force, <i>F</i> /mN
0.80	0.69	
1.60	1.37	13.4
2.40	2.06	20.2
3.20	2.74	
4.00	3.43	33.6
4.80	4.11	40.3

Complete the table. *Space for calculations.* (i)

[2]

(iii)	Explain to what extent the data show that the force is proportional to the current. [3]
(iv)	The length of the portion XY of the wire is 5.0 cm. Determine the magnetic flux density, <i>B</i> , of the field between the poles of the magnet and quote it to an appropriate number of significant figures. [4]
(v)	Nancy claims that the forces on the vertical portions of the wire have not been considered in the answer to part (iv) and that the answer will be inaccurate because of this. Evaluate whether or not Nancy is correct. [2]
(vi)	The value of the magnetic flux density in part (iv) is slightly inaccurate for another reason which has nothing to do with human error or meter inaccuracies. Discuss what might be the cause of this inaccuracy. [2]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

(a)	Describe the appearance of line emission spectra and absorption spectra, how they can be produced and explain the atomic processes responsible for their production. [6 QER]	C

19

20

A photocell is used to demonstrate the photoelectric effect.	
V o + (nA)	
<i>(a)</i> Explain what is meant by the photoelectric effect.	[3]
 (b) Light of frequency 655 THz and intensity 96.0 W m⁻² is incident on the photocell which an emitting surface area of 2.50 cm². (i) Calculate the number of photons per second incident on the photocell. 	1 has [4]
	······

Examiner only Calculate the current, given that only 0.54 % of the incident photons lead to electrons that are collected at the anode. [2] (ii) Explain how the maximum kinetic energy of electrons can be measured using this (C) apparatus. [3] A420U301 21 12

	³ He	+ ¹ H	4 He + e ⁺ + v		
	2110		2110 1 C 1 Ve	2	
(a) Show react	w how conservatio tion.	n of baryon	number, charge ar	nd lepton num	ber apply to this [3]
<i>(b)</i> The	electron neutrino ir	ndicates that t	his is a weak force	e interaction. St	ate another clear
indic	ator that this reaction	on is a weak f	orce interaction.		[1]
(c) The	masses of the parti	cles in the rea	action are:		
<i>(c)</i> The Particle	masses of the parti Mass/kg	cles in the rea Particle	action are: Mass/kg	Particle	Mass/kg
(c) The Particle $\frac{3}{2}$ He	masses of the parti Mass/kg 5.006×10^{-27}	cles in the rea Particle $\frac{4}{2}$ He	Action are: Mass/kg 6.645×10^{-27}	Particle v _e	Mass/kg 0
(c) The Particle $\frac{3}{2}$ He $\frac{1}{1}$ H	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27}	cles in the rea Particle $\frac{{}^{4}_{2}}{He}$ e^{+}	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31}	Particle _{Ve}	Mass/kg 0
(c) The $\frac{2}{2}$ He $\frac{1}{1}$ H Calc	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27} ulate the energy rel	cles in the rea Particle $\frac{{}^{4}_{2}\text{He}}{{}^{e^{+}}}$ leased in the r	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31} reaction.	Particle v _e	Mass/kg 0 [2]
(c) The Particle ${}^{3}_{2}$ He ${}^{1}_{1}$ H Calc	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27} ulate the energy rel	cles in the rea Particle $\frac{{}^4_2 He}{e^+}$ leased in the r	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31} reaction.	Particle v _e	Mass/kg 0 [2]
(c) The Particle $\frac{3}{2}$ He $\frac{1}{1}$ H	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27} ulate the energy rel	cles in the rea Particle $\frac{{}^{4}_{2}\text{He}}{{}^{e^{+}}}$ leased in the r	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31} reaction.	Particle V _e	Mass/kg 0 [2]
(c) The Particle ³ / ₂ He ¹ / ₁ H Calc	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27} ulate the energy rel	cles in the real Particle $\frac{{}^{4}_{2}\text{He}}{{}^{e^{+}}}$ leased in the r	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31} reaction.	Particle v _e	Mass/kg 0 [2]
(c) The Particle $\frac{3}{2}$ He $\frac{1}{1}$ H Calc	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27} ulate the energy rel	cles in the real Particle $\frac{4}{2}$ He e^+ leased in the r	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31} reaction.	Particle v _e	Mass/kg 0 [2]
(c) The Particle $\frac{3}{2}$ He $\frac{1}{1}$ H Calc	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27} ulate the energy rel ther more common	cles in the rea Particle ⁴ / ₂ He e ⁺ leased in the r nuclear reacti	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31} reaction. ion for ${}^{3}_{2}$ He in stars	Particle V _e	Mass/kg 0 [2]
(c) The Particle $\frac{3}{2}$ He $\frac{1}{1}$ H Calc	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27} ulate the energy rel ther more common $\frac{3}{2}$ H	cles in the real Particle $\frac{4}{2}$ He e^+ leased in the r nuclear reaction In the reaction of the rea	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31} reaction. fon for ${}^{3}_{2}$ He in stars \rightarrow ${}^{4}_{2}$ He + $2{}^{1}_{1}$ H	Particle Ve	Mass/kg 0 [2]
(c) The Particle ³ / ₂ He ¹ / ₁ H Calc (d) Anot	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27} ulate the energy rel ther more common $\frac{3}{2}$ H nie claims that this is	cles in the real Particle $\frac{4}{2}$ He e^+ leased in the r nuclear reaction Inuclear Inuclear Inucl	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31} reaction. ion for ${}^{3}_{2}$ He in stars $\rightarrow {}^{4}_{2}$ He + $2{}^{1}_{1}$ H lear force reaction.	Particle v _e	Mass/kg 0 [2]
(c) The Particle ³ / ₂ He ¹ / ₁ H Calc (d) Anot Sophis co	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27} ulate the energy rel ther more common $\frac{3}{2}$ H hie claims that this is prect.	cles in the real Particle $\frac{4}{2}$ He e^+ leased in the r nuclear reaction Ie + $\frac{3}{2}$ He -	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31} reaction. ion for ${}^{3}_{2}$ He in stars $\rightarrow {}^{4}_{2}$ He + $2{}^{1}_{1}$ H lear force reaction.	Particle v _e	Mass/kg 0 [2]
(c) The Particle ³ / ₂ He ¹ / ₁ H Calc (d) Anot Sophis co	masses of the parti Mass/kg 5.006×10^{-27} 1.673×10^{-27} ulate the energy rel ther more common $\frac{3}{2}$ H nie claims that this is prect.	cles in the real Particle $\frac{4}{2}$ He e^+ leased in the r nuclear reaction If $e + \frac{3}{2}$ He -	action are: Mass/kg 6.645×10^{-27} 9.11×10^{-31} reaction. ion for ${}^{3}_{2}$ He in stars $\rightarrow {}^{4}_{2}$ He + $2{}^{1}_{1}$ H lear force reaction.	Particle v _e	Mass/kg 0 [2]

A420U301 23

BLANK PAGE

8.	(a) State Faraday's law and Lenz's law of electromagnetic induction.					
	······					
	(b)	(i)	Varying magnetic, B , fields can lead to heating effects. Explain why the metal rin becomes hot in the set-up shown below. [2]	 19 2]		
			Thin metal ring			
			Rapidly changing B-field			
		(ii) 	Calculate the current in the ring if the rate of change of the <i>B</i> -field is 67 T s^{-1} , the ring has a radius of 7.0 cm and a resistance of 0.087 Ω . [3	e 3]		

		Examine
(C)	The rapidly changing electromagnetic fields of microwaves are known to cause heating effects but are also thought, by some, to cause cancer.	only
	The Devon town of Totnes has banned the modern mobile phone network 5G even though this network is limited to an intensity of 10 W m^{-2} , the same as all other microwave mobile networks.	
	The intensity of electromagnetic radiation from the Sun on Totnes is around 1000 W m ⁻² . Discuss whether Totnes Council has used scientific information wisely in their decision making. [3]	
.		
·····		
.		
		11
]
25	© WJEC CBAC Ltd. (A420U30-1) Turn over.	

BLANK PAGE

SECTION B: OPTIONAL TOPICS						
Option A – Alternating Currents						
Option B – Medical Physics						
Option C – The Physics of Sports						
Option D – Energy and the Environment						
Answer the question on one topic only .						
Place a tick (\checkmark) in one of the boxes above, to show which	ch topic you are answering.					
You are advised to spend about 25 minutes on this	section.					

28

b) The	following <i>RCL</i> circuit is set up.
	variable frequency a.c. supply
	$V_{\rm rms} = 4.5 V$
(i) 	Show that the resonance frequency of the circuit above is approximately 10000 Hz. [1]
(ii) 	Explain why the maximum rms current is approximately 50 mA. [1]
 (iii)	Show that the rms current in the circuit is approximately 17 mA when the frequency is 16 kHz. [3]

Examiner

		Option B – Medical Physics	
- ((a)	The electrons in an X-ray tube are accelerated by a pd of 45 kV.	
		(i) Determine the kinetic energy in Joule with which an electron hits the target aft accelerating through this voltage. [2	er 2]
		(ii) Determine the minimum wavelength of the X-rays. [2	2]
		(iii) The X-ray tube has an efficiency of 0.5 % and the anode current is 0.12 A. Calcula the power of the X-rays produced.	te 2]
((b)	(iii) The X-ray tube has an efficiency of 0.5% and the anode current is 0.12A. Calcula the power of the X-rays produced. [2] The fraction, $\frac{I_R}{I_0}$, of ultrasound reflected at a boundary between two materials of acoustic impedance Z_1 and Z_2 is given by the equation:	te 2]
((b)	(iii) The X-ray tube has an efficiency of 0.5% and the anode current is 0.12 A. Calcula the power of the X-rays produced. [2] The fraction, $\frac{I_R}{I_0}$, of ultrasound reflected at a boundary between two materials of acoustic impedance Z_1 and Z_2 is given by the equation: $\frac{I_R}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$	te 2]
((b)	(iii) The X-ray tube has an efficiency of 0.5% and the anode current is 0.12A. Calcula the power of the X-rays produced. [2] The power of the X-rays produced. [3] The fraction, $\frac{I_R}{I_0}$, of ultrasound reflected at a boundary between two materials of acoustic impedance Z_1 and Z_2 is given by the equation: $\frac{I_R}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$ Using the information given in the table below determine the fraction of ultrasound that reflected at the air/skin boundary. [3]	is 2]
((b)	(iii) The X-ray tube has an efficiency of 0.5% and the anode current is 0.12 A. Calcula the power of the X-rays produced. [2] The power of the X-rays produced. [3] The fraction, $\frac{I_R}{I_0}$, of ultrasound reflected at a boundary between two materials of acoustic impedance Z_1 and Z_2 is given by the equation: $\frac{I_R}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$ Using the information given in the table below determine the fraction of ultrasound that reflected at the air/skin boundary. [3]	is 2]
((b)	(iii) The X-ray tube has an efficiency of 0.5% and the anode current is 0.12A. Calcula the power of the X-rays produced. [2] The fraction, $\frac{I_R}{I_0}$, of ultrasound reflected at a boundary between two materials of acoustic impedance Z_1 and Z_2 is given by the equation: $\frac{I_R}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$ Using the information given in the table below determine the fraction of ultrasound that reflected at the air/skin boundary. [2]	is 2]

(c)	(i)	A magnetic resonance image (MRI) scanner can be used to detect tumours in a patient's body. Describe the effect a strong magnetic field has on hydrogen and how the hydrogen absorbs and emits radio waves. [2]
	(ii)	The MRI scanner has a magnetic field of 1.4 T. Determine the wavelength of electromagnetic radiation that should be used to detect the tumour. [2]
d)	Expl	ain how PET scanners work. [3]

choic	thrombosis (L e of the follow	0VT) – blood clots in ving techniques to dia	the leg leading to s agnose this.	slow blood flow. They have the	
X-ray	MRI	ultrasound	CT scan	radioactive tracers	
Evalu the le	ate the suitab g.	bility of all five types	of imaging techniq	ues for detecting blood clots in [5]	

BLANK PAGE

36

(i)	In a practice match a player applies spin to the ball when passing to a team-mate. A spectator suggests that applying spin has no effect on the flight of the ball. Explain whether the spectator is correct. [3]
	Determine the torque applied to the ball to enable it to spin at a rate of 7.3 rad s ⁻¹ from rest in 0.3 s. The mass of the ball is 450 g and diameter 220 mm. The moment of inertia is given by the equation $I = \frac{2}{3}mr^2$. [4]
 (iii)	During a different pass of the ball; the rotational kinetic energy of the ball is 4.4 J. Determine the number of revolutions per second of the ball. [3]
······	
······	

4.8 m	
flight for the ball to reach the scoring hoop.	[2]
ot a goal is scored.	[2]
ot a goal is scored.	[2]

39

(b)	(i)	State Archimedes' principle. [2]
	(ii)	Harry adds a block of ice to a measuring cylinder containing saltwater. This causes the measuring cylinder reading to increase by 100 cm^3 . The density of saltwater is 1020 kg m^{-3} and the density of ice is 920 kg m^{-3} . Determine the volume of the block of ice above the surface. [3]
	(iii)	The block of ice is left to melt. Harry says the ice melting will dilute the saltwater, decreasing its density. He suggests that adding an identical cube of ice would now increase the measuring cylinder reading by more than 100 cm ³ . Evaluate whether
		or not Harry is correct. [2]

© WJEC CBAC Ltd.

42

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
	1	

BLANK PAGE

BLANK PAGE

BLANK PAGE

